
Path planning optimization based on Bézier curves through open-doors
way point

Simon Landrault, Philippe Lucidarme and Nicolas Delanoue

LISA, University of Angers, 62 avenue Notre Dame du Lac, 49000 Angers, France

{firstname.lastname}@univ-angers.fr

Keywords: Mobile robots, path-planning , Voronoı̈ Diagrams, Bézier curves, way points.

Abstract: Generalized Voronoı̈ Diagrams has been demonstrated to be a relevant tool for planification in a mobile

robotics context. Therefore, the generated trajectories may suffer of discontinuities and non-optimality. This

paper introduces a reflexion on the use of Bézier curves to solve both of these drawbacks. The key idea of this

paper is to be able to smoothen a trajectory in order to save traveling time and therefore reduce displacement

and overall consumption (in our mobile robotics context: reduction of battery usage and localization errors).

The presented work is firstly detailed and explained on a synthetic map, and experimental results with mobile

robots are presented. Disadvantages and advantages are discussed at the end of the paper.

1 INTRODUCTION

Path planning is a key task in many fields, espe-

cially in mobile robotics. It started in the early 60’

with the first industrial robot. Nowadays, we can find

those applications everywhere, from the industrial ap-

plication with the robotic arms assembling cars, to the

personal house cleaning ”Roomba” robot. However,

the solutions are different, the movement is not de-

veloped in the same way. The first one is developed

under the supervision of a human operator, to guar-

antee a correct accuracy and be sure of the repeata-

bility of the placement in a defined universe. In the

second case, the trajectory is studied ”on-line” and

completely autonomously. The robot will move in the

space and design a map of the environment to deter-

mine the path to follow [1] and [2].

In our context, we had to develop a robot able to

discover and create a map of it on-line. Therefore, it

needed to plan the trajectory and move around effi-

ciently simultaneously. It is in these conditions that

this solution as been submitted as a research work.

The aim of the present work is to improve the cur-

rent planification and to be able to have an efficient

and smooth trajectory. Those two characteristics are

important for different reasons. The first is, of course,

the traveling time. The more direct is the trajectory

and the more time is saved. This result has conse-

quences on other levels. For example, the less the

robot travels and the less energy will be consumed

and the fastest it travels the more time remains to in-

Figure 1: Map used for the demonstration.

crease the exploration.

This paper will now introduce the different opti-

mization and algorithms used to develop the trajec-

tory. Some algorithms are already known. They will

be explained here as a state of the art and why they

are useful in our application.

Note that the demonstration will be supported by

examples applied on a synthetic map. In order to

have comparable results, the same map will be kept

all along and can be seen on the Figure 1.

Let us assume the map is discretized and stored in



the computer’s memory as a grid of cells. Each cell

represent an information about the space (typ. obsta-

cle or not). For this study, we will store a Boolean in

each cell meaning the presence of an obstacle (true)

or not (false).

Working straight from the discretized map gener-

ates the first problem : the space size for the research

of the best path. In two dimensions, we will have a

n×m cells. If both dimensions grow by 2, the size

of the research space is then multiplied by four. The

growth is exponential with the dimension.

Another problem with this representation is the

accuracy. A fine representation of the environment

and path needs a high sample rate that increases the

size of the overall grid, memory consumption and

computing time.

A last issue with this representation is the graph of

the connection between each node (generally equiva-

lent to cells). The bigger the space and the bigger

will be the number of connection to pile up in mem-

ory. For a 2 dimensional space, there are different

kinds of connectivity to define links between cells:

4-connectivity (only horizontal and vertical moves)

and 8 connectivity (same as before, moreover diago-

nal moves are allowed). In a mobile robotics context,

none of them, combined with classical approaches

(Dijkstra or A* based algorithms) provides a satisfy-

ing trajectory.

Some other techniques like rrt [8](rapidly random

explored trees) has also been proposed in the state

of the art. Even if these techniques has been proven

to be very fast and quite efficient in practice, some

drawbacks still remain. Such algorithms provides

non-optimal solutions without any guaranty of con-

vergence. As these techniques are based on a ran-

dom exploration of the environment, the repeatability

is very poor. For these reasons, our work is mainly

focused on a Voronoı̈ Diagram based approach that

seems to be an interesting avenue for research.

Previous works have shown that the use of Gener-

alized Voronoı̈ Diagrams [4] [3] is a big step forward

to tackle those problems. Such diagrams are used to

quickly explore the space and thus reduce it to a graph

where nodes are particular cells. Indeed, each cell of

the graph represents a point which is equidistant to

any change in the space (in our case, a change will be

represented by the configuration of each cell: naviga-

ble or not).

Applying this representation to a standard map

will result in the obtention of a graph with nodes, con-

nected to each other. Nodes are only placed in the

middle of the free space between walls. Such com-

puted diagram is shown on Figure 2.

There is still one limit which remains similar to

Figure 2: Voronoı̈ graph on a map (the blue circles are the
Voronoı̈ cells).

the one before: the granularity of the space. The

finer the graph will be and bigger memory space will

be used. However, this amount will always be very

smaller than the initial grid representation. Note also

that the computation of the Voronoı̈ Diagram has been

proven to have a linear complexity [4].

2 TRAJECTORY PLANNING

To simplify our presentation, we will consider that

the graph is connected, from one point we can always

reach another one. The input of our path optimization

algorithm can be obtained by any path planning al-

gorithms (A*, Dijkstra algorithm, . . . ). On Figure 3,

the path from the top left node of the Voronoı̈ graph

to the bottom right was computed using the Dijkstra’s

algorithm.

2.1 Optimization issue

As seen on the Figure 3, different spots can be op-

timized. For example, the orange circled area is not

optimal. Indeed, to be more efficient, the trajectory

would have to go less high and more straight. In this

way the robot would save energy (less turn and accel-

eration) and use less time to travel.



Figure 3: Voronoı̈ trajectory with a possible optimization
area.

3 BÉZIER CURVE BASED

TRAJECTORY OPTIMIZATION

3.1 Bézier curve

In order to solve the problem described in the previous

section, the trajectory need to be smoothed. To do so,

the application of a polynomial Bézier [7] curve can

be used. In a simple way, this curve will use each node

from the Voronoı̈ graph which are visited by the path

finding algorithm to be computed. A node will then

be considered as a ”way-point” of the Bézier curve.

To draw this curve, each way-point is pondered by

a polynomial coefficient at a time t. The definition

function of this curve will be: ∑
n
i=0 Bn

i (t).Pi with t ∈
[0,1], Bn

i are the Bernstein coefficient and Pi are the

way-points.

The problem with this approach is that the number

of way-point will decrease the smoothing effect of the

curve. In order to counter that, another approach is

followed, using less points and a ”part-to-part” defi-

nition of the curve.

3.2 Gate way-point

To avoid the lost of the smoothing effect of the Bézier

curve by using too many way-point, a new method

of way-point definition is here proposed. This algo-

rithm is based on the human behavior when going

trough a door. The main idea is that whenever we (hu-

mans) want to go through a door, we will do it with

our shoulder oriented in the perpendicular axis of the

door, and the body centered in the doorway.

Figure 4: Bézier curve (in orange) through doors (green and
red dots are Bézier way-point for each door and blue area
are walls).

Another observation point is that in a space, a door

represent a local minimum in the function defining the

trajectory. Therefore, it is rather easy to detect them.

From this statement, it is decided that the center

of all the ”doors” will be a way-point for the Bézier

curve. To be able to compute a Bézier curve, at least 4

points are needed. From one door to another it makes

only two. Two others will be added upon the direction

and the size of the door. Two way point are defined in

the following way:

• the way-point is placed on a virtual line perpen-

dicular to the axis of the door,

• the wider is the door and the furthest from its cen-

ter can be the way-point.

From this stage, four way-point are defined. The

Bézier curve can be defined using the following ex-

pression:

P(t) = P0(1−t)3+3P1t(1−t)2+3P2t2(1−t)+P3t3

for 0 ≤ t ≤ 1 as seen on Figure 4.

To define a complete path, we just need to define a

trajectory from door to door and then merge all those

path together to obtain the complete navigation. A big

advantage of this method is that the navigation will

always be safe when going through critical places (the

doors, local minimum), as seen on Figure 5. However,

the method is not yet proved to be safe (obstacle-free)

in between. The next part will demonstrate why and

what solutions/tests could be experimented.

3.3 Drawback, limitation and discussion

3.3.1 Size of the door

As seen on the Figure 5, one of the first limit of this

Bézier smoothing is that the doors are not limited in

width. It means that even in a big space there is going

to be a door to start it and so a way-point for the curve.

The result is that the curve as to make some rather big

detour and so make a lost of time for the robot.

One way to sort out this limit is to use a threshold

on the size of a door. If it’s bigger than this thresh-

old, it is not taken in account to create a way-point.



Figure 5: Bézier curve (in blue) through doors.

Figure 6: Bézier curve (in blue) through doors, with a limit
on the ”door width”.

However, this solution depends on the context (size

of the corridor, scale of the map...) and is difficult to

be determined in an autonomous way of decision. A

manual thresholding could give the result seen on the

Figure 6 as opposite to the Figure 5 without it.

3.3.2 Safety of traveling

As for now, the question of safety of traveling cannot

be answered (as stated in the introduction, it is still

a work in progress). The study is now at this point

of solving the answer of the question: “Is it always

collision-free ?”. In most of the case, the empiric

results show that the computed smooth trajectory is

safe. However, in some particular case (with aligned

circular wall) the path will go through the wall (See

figure 7).

As a perspective of this work, two solutions have

been emitted. First, a property of the Bézier curve

says that the curve is always contained in the convex

hull that defined it (See figure 8). This mean that we

could check if the convex hull intersects a wall or not.

If yes, then the trajectory between those two doors

need to be improved. If no, then this part of the curve

is collision-free.

Another idea is to check if the circumscribing cir-

cle of the envelope is within a corridor defined by the

Voronoı̈ graph. The notion of the corridor is given by

the union of all circular spaces between a Voronoı̈ site

and the obstacles it refers to (as seen on the Figure 9).

In this circle, no obstacles can be found. Therefore,

testing if the circumscribing circle of the envelope is

in the corridor allows to conclude on the safeness of

the path. The advantage of this solution is the speed

of the computation; it is quite fast to check if a circle

is included in an union of other circles.

Figure 7: Non-obstacle-free trajectory.

Figure 8: Envelope (pink) of a Bézier curve (orange).

4 EXPERIMENTS

This work takes place in a larger project called

Cart-O-matic. Our team was involved in a robotics



Figure 9: The corridor (Grey) for a path (blue).

competition (Défi-CAROTTE) founded by the French

Research Agency (ANR) and the General Delegation

for Armaments (DGA). The aim of this contest was

to map and locate objects in a structured environment

similar to an apartment. The particularity of our team

was the use of a multi-robot strategy [10] [9]. Our

team designed and built seven identical mobile robots

called MiniRex (MINIature Robot for Exploration) il-

lustrated in Fig. 10 . Each robot is composed of an

Embedded PC (proc. Atom 1.6GHz), inclinometer,

ultrasonic sensors for navigation, LIDAR for localiza-

tion and mapping, and an RGB-D sensor (Microsoft

Kinect) for object recognition. Figures 11 and 12 il-

lustrate the proposed algorithm applied on environ-

ments mapped by robots.

Figure 10: The MiniRex robot while exploring its environ-
ment.

Figure 11: Illustration of a trajectory inside a mapped build-
ing from the university of Angers.

Figure 12: Illustration of a trajectory in a multi-robot
mapped bulding.

5 CONCLUSION

As seen in the development, this optimization

method introduces advantages on the path planifica-

tion problems. The global idea of reducing the best

trajectory seems to be reached and the ”human-based”

behavior tends to give a reliable solution and elegant

way of displacement.

However, even if in most cases the algorithm

seems to work, the lack of a mathematical proof can-

not allow to conclude on the efficiency of the method.

Moreover, as seen on Figure 7, some cases brings a

set of new problem to which solutions are not found

yet.



Acknowledgment

This work has been partially supported by the

French National Research Agency (ANR) and Gen-

eral Delegation for Armaments (DGA) through the

Cart-O-matic project in the CAROTTE challenge.

REFERENCES

[1] S. Jagannathan, S. Q. Zhu and F. L. Lewis Path

planning and control of a mobile base with non-

holonomic constraints., Robotica, 1994, Volume

12, Issue 06.

[2] T. Dierks and S. Jagannathan Neural Network

Control of Mobile Robot Formations Using

RISE Feedback., IEEE Transactions on Systems,

Man, and Cybernetics, Part B: Cybernetics, Vol-

ume:39 , Issue: 2, April 2009.

[3] M. Seda, V. Pich, Robot motion planning using

generalised voronoi diagrams, ISCGAV’08 Pro-

ceedings of the 8th conference on Signal pro-

cessing, computational geometry and artificial

vision pp.215-220, 2008.

[4] S. Fortune, A Sweepline Algorithm for Voronoı̈

Diagrams, Algorithmica, vol. 2, pp. 153-174,

1987.

[5] Thomas H. Cormen, Charles E. Leiserson,

Ronald L. Rivest et Clifford Stein, Introduction

to Algorithms, MIT Press et McGraw-Hill sec-

tion 24.3, pp.595-601, 2001.

[6] P.E. Hart, A Formal Basis for the Heuristic De-

termination of Minimum Cost Paths, in IEEE

Transactions on Systems Science and Cybernet-

ics SSC4, vol. 4, no 2, pp. 100-107, 1968.

[7] G. Demengel, J.P. Pouget, Modèles de Bézier,

des B-splines et des NURBS - Mathématiques

des courbes et des surfaces, ed.Ellipses ISBN:

9782729898069, 1998.

[8] S. M. LaValle, Planning Algorithms,Cambridge

University Press, Cambridge, U.K., 2006.

[9] A. Bautin, O. Simonin and F. Charpillet,

Towards a communication free coordination

for multi-robot exploration, CAR 2011, 6th

National Conference Control Architecture of

Robots, May 2011, Grenoble, France.

[10] S. G. Shahbandi and P. Lucidarme Object

Recognition Based on Radial Basis Function

Neural Networks: experiments with RGB-D

camera embedded on mobile robots., 1st Inter-

national Conference on Systems and Computer

Science (ICSCS 2012), IEEE, Lille, France, Au-

gust 2012.


